Feature Selection for Hidden Markov Models and Hidden Semi-Markov Models
نویسندگان
چکیده
منابع مشابه
Hidden semi-Markov models
Article history: Received 14 April 2009 Available online 17 November 2009
متن کاملHidden semi-Markov models (HSMMs)
A semi-Markov HMM (more properly called a hidden semi-Markov model, or HSMM) is like an HMM except each state can emit a sequence of observations. Let Y (Gt) be the subsequence emitted by “generalized state” Gt. The “generalized state” usually contains both the automaton state, Qt, and the length (duration) of the segment, Lt. We will define Y (Gt) to be the subsequence yt−l+1:t. After emitting...
متن کاملOptimal linear feature transformations for semi-continuous hidden Markov models
Linear discriminant or Karhunen-Lo eve transforms are established techniques for mapping features into a lower dimensional subspace. This paper introduces a uniform statistical framework, where the computation of the optimal feature reduction is formalized as a Maximum-Likelihood estimation problem. The experimental evaluation of this suggested extension of linear selection methods shows a slig...
متن کاملHierarchical Multi-channel Hidden Semi Markov Models
Many interesting human actions involve multiple interacting agents and also have typical durations. Further, there is an inherent hierarchical organization of these activities. In order to model these we introduce a new family of hidden Markov models (HMMs) that provide compositional state representations in both space and time and also a recursive hierarchical structure for inference at higher...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2016
ISSN: 2169-3536
DOI: 10.1109/access.2016.2552478